
Epidemic Surveillance Using an Electronic Medical
Record: An Empiric Approach to Performance
Improvement
Hongzhang Zheng1,2, Holly Gaff3, Gary Smith4, Sylvain DeLisle1,2*

1 Veterans Affairs Maryland Health Care System, Baltimore, Maryland, United States of America, 2 School of Medicine, University of Maryland, Baltimore, Maryland, United

States of America, 3 Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America, 4 School of Veterinary Medicine, University of

Pennsylvania, Kennett Square, Pennsylvania, United States of America

Abstract

Backgrounds: Electronic medical records (EMR) form a rich repository of information that could benefit public health. We
asked how structured and free-text narrative EMR data should be combined to improve epidemic surveillance for acute
respiratory infections (ARI).

Methods: Eight previously characterized ARI case detection algorithms (CDA) were applied to historical EMR entries to
create authentic time series of daily ARI case counts (background). An epidemic model simulated influenza cases (injection).
From the time of the injection, cluster-detection statistics were applied daily on paired background+injection (combined)
and background-only time series. This cycle was then repeated with the injection shifted to each week of the evaluation
year. We computed: a) the time from injection to the first statistical alarm uniquely found in the combined dataset
(Detection Delay); b) how often alarms originated in the background-only dataset (false-alarm rate, or FAR); and c) the
number of cases found within these false alarms (Caseload). For each CDA, we plotted the Detection Delay as a function of
FAR or Caseload, over a broad range of alarm thresholds.

Results: CDAs that combined text analyses seeking ARI symptoms in clinical notes with provider-assigned diagnostic codes
in order to maximize the precision rather than the sensitivity of case-detection lowered Detection Delay at any given FAR or
Caseload.

Conclusion: An empiric approach can guide the integration of EMR data into case-detection methods that improve both
the timeliness and efficiency of epidemic detection.
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Introduction

Epidemics of acute respiratory infections (ARI), whether due to

influenza [1,2], coronaviruses [3,4], or other pathogens [5,6],

could overwhelm even the most developed health care systems. It

is imperative to recognize these epidemics as early as possible, as

the passage of time quickly degrades the effectiveness of mitigating

measures [7].

Electronic data offer the opportunity for more timely and

complete gathering of health information compared to what has

historically been achieved through manual, paper-based reporting

[8]. The increasingly rapid deployment of electronic medical

records (EMR) [9] broadens the array of data that could be

recruited for surveillance purposes [10,11]. EMR-based surveil-

lance could improve our response to a serious outbreak of ARI not

only by allowing earlier recognition, but also by offering an

efficient conduit for the information necessary to manage actual

patients and to keep abreast of the evolving epidemic [12–14]. At

present, however, the tantalizing potential of EMR-based surveil-

lance remains in the making [15–18].

To gain insight on the conduct of surveillance in an EMR

environment, we previously evaluated how EMR entries should be

assembled to discover individuals with ARI [19]. We found that

computerized free-text analyses aimed at uncovering ARI

symptoms documented in outpatient clinical notes could comple-

ment diagnostic codes and other structured data to improve case

detection. In this report, we asked if those EMR-enabled gains in

case-detection could accelerate the discovery of ARI outbreaks.

Using software to reconstitute a surveillance system operating

prospectively on historical data sets, we compared alternative case-

detection approaches for their ability to reduce the delay in

detecting a modeled community outbreak of influenza. Our
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approach and results begin to chart how EMR-based information

could be systematically organized to better serve public health

surveillance.

Methods

Ethics Statement
The Institutional Review Boards of the Veterans Administration

(VA) Maryland Health Care System and the University of

Maryland approved this study. The study was granted a waiver

of consent as risks were limited to information confidentiality and

the work would not have otherwise been feasible, given the large

number of EMR records screened for possible ARI. All EMR

information was anonymized and de-identified prior to simulations

and analyses, which used only daily case counts.

Description of Procedures
EMR Data extractions and transformation. Historical

EMR data were extracted from the Veterans Integrated Service

Technology Architecture (VistA) repository using the MDE

software (Strategic Reporting Systems Inc., Peabody, MA) and

transferred to a Structured Query Language (SQL) relational

database (SQL Server 2008, Microsoft Corp., Richmond, WA).

Background: authentic counts of patients with possible

ARI. Outpatients with possible ARI were identified by applying

previously developed ARI case-detection algorithms (CDAs) [19]

to institutional databases derived from real historical EMR entries.

ARI was defined as: positive respiratory virus culture/antigen OR

any two of the following symptom, of no more than 7 days

duration: a) cough; b) fever or chills or night sweats; c) pleuritic

chest pain; d) myalgia; e) sore throat; f) headache AND illness not

attributable to a non-infectious etiology. The components and

single-case detection performance of the eight (8) ARI CDAs

selected for the current studies are summarized in Table 1. CDA

components included: a) provider-assigned ARI-related diagnostic

codes (International Disease Classification, 9th Revision, Clinical

Modification, ICD-9) either used by the original Centers for

Disease Control and Prevention (CDC) ‘‘BioSense’’ surveillance

system [20] (the ‘‘CDC ICD-9 Codes’’ component in Table 1) or a

code set previously adapted to the VA (‘‘VA ICD-9 Codes’’) [19];

b) prescription for cough suppressants (‘‘Cough Remedies’’); c)

documented body temperature of $38uC; d) computerized

analysis identifying at least two symptoms from the ARI case

definition in the free text of the clinical note [19]. Time series of

daily ARI counts were created for each CDA (those datasets are

provided as Datafiles S1, S2, S3, S4, S5, S6, S7, and S8), and

served as the backgrounds into which synthetic influenza

epidemics were injected.

Signal: synthetic influenza epidemic. To create a plausible

ARI outbreak to be discovered by the surveillance system, we

developed an epidemic model of influenza (Matlab R2008a, the

Mathworks, Inc., Natick MA). The model included 30 contiguous

ZIP codes centered on Baltimore, Maryland, and consisted of a

coupled series of differential equations to describe the overall

epidemic [21]. The susceptible population has the size and age

structure described for Baltimore in the 2000 Census [22]. Age-

specific death rates for each of the 20 demographic age-classes

(age-class 1 = 0–4 years, age-class 2 = 5–9 years and so on) were

derived from the United States Life Table Functions for the 1994

calendar year [23]. The birth rate for each age-class was obtained

from Guyer et al. [24]. Model parameters were adjusted to mimic

the estimated transmission and severity characteristics of the 1918

pandemic influenza in a non-immune population [25]. The

proportion of cases that would be present for medical evaluation at

the VA Maryland Health Care system was adjusted to reflect the

age, gender, and population estimates of Baltimore veterans, over

half of whom are older than 60 years old and more than 90% are

male [26]. The same model-generated outbreak that was used as a

common signal for all of our surveillance simulations is shown in

Fig. 1 (upper panel, blue circles). Assuming that the synthetic

epidemic cases would be discovered at the same rate as authentic

cases, simulated cases from the epidemic model were first

discounted by the sensitivity of the ARI CDA before being

injected into CDA-specific background time series.

Surveillance simulations. We developed software aimed at

replicating a surveillance system operating prospectively on the

authentic historical background datasets described above (R v.

2.15.0, http://www.r-project.org). Starting on the day when the

synthetic epidemic was injected into a CDA-specific authentic

background time series, and then daily for a total of 80 days, a

statistical outbreak detection method (see below) was applied in

parallel to corresponding time series that included either: a) both

background and epidemic cases (‘‘Combined’’ dataset; Fig. 1, red

circles, upper panel for the case counts, lower panel for the

corresponding W2c statistic); or b) background-only cases (‘‘Back-

ground’’ dataset; Fig. 1, black diamonds, upper panel for the case

counts, lower panel for the corresponding W2c statistic). A true

positive alarm was issued if the value of the computed statistic

exceeded a set threshold in the Combined but not in the

Background dataset (Fig. 1, lower panel, instances where red

circles are above threshold whereas black diamonds remain below

threshold). The 80-day cycle length was chosen because it ensured

at least one true-positive alarm with each surveillance cycle. This

prospective surveillance cycle was then repeated 51 times, each

time shifting the outbreak injection to a different week of the one-

year evaluation period (from 1/8/2002 to 31/7/2003, a year with

average seasonal ARI activity).

Outbreak detection statistics. We used the ‘‘early aberra-

tion reporting system’’ (EARS) W2c [27,28] statistical method to

detect the injected epidemic. Daily case counts were separated a

priori into two time series, one for weekdays and another for

weekend and federal holidays. Using the appropriate time series

for a given index day, the EARS W2c statistic is expressed as

W2c(t)~
Y (t){ �YY (t)

S(t)

where t is the time series index, Y (t) is the observed case count on

that index day, �YY (t) and S(t) are respectively a 7-day moving

sample mean and a standard deviation calculated with a 2-day lag

from the index day. The value of S(t) was replaced by 1 if S(t),1.

The method signaled when the value of the W2c statistic exceeded

a given threshold.

Performance measures. We computed three performance

benchmarks at any given statistical alert threshold: 1) the

Detection Delay, the time from the injection of the synthetic

outbreak to the first true positive alarm, averaged for the 52

surveillance cycles of the evaluation year; 2) the false alarm rate

(FAR), the average daily number of unique alarms issued in the

background-only time series during the evaluation year; 3) the

Caseload, defined as the total yearly number of cases included in

the above false alarms. Corresponding Detection Delays, FARs

and Caseloads were obtained for a range of statistical alert

thresholds adjusted iteratively to focus on a FAR range felt to be of

practical use for surveillance i.e. 0–10%.
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Results

The activity monitoring operating characteristic (AMOC)

curves [29,30] shown in Figure 2, upper panel, illustrate the

relationship between average delay at detecting the synthetic

influenza epidemic and the FAR for simulated surveillance systems

that utilize one of eight (8) alternative case-detection approaches

(Table 1, CDA 1–8).

Effect of adjusting diagnostic code sets
The surveillance advantages of adjusting the ICD-9 codes used

to identify ARI cases can be visualized by comparing the AMOC

curves obtained using a ‘‘respiratory’’ code set used by a

surveillance system of national scope [20] (Table 1, CDA 1;

Fig. 2, upper panel, grey stars) with that of a surveillance code set

adapted to the VA health system [19] (Table 1, CDA 2; Fig. 2,

upper panel, black circles). Note that at any given FAR, CDA 2

resulted in shorter detection delay than CDA 1 (Fig. 2, upper

panel, compare black circles with grey stars).

Effect of combining diagnostic codes with text analyses
of the clinical note

Case detection that relied solely on text analyses of clinical notes

resulted in outbreak detection performance roughly on par with

that of the VA-adapted set of ICD-9 codes (Fig. 2, upper panel,

compare green ‘‘plus’’ signs (CDA 4) to black circles (CDA 2)).

When combined to ICD-9 codes using an ‘‘OR’’ logical operand,

text analyses boosted both case-detection sensitivity to 97% and

the area under the ROC curve (Table 1, compare CDA 5 to CDA

2). Despite these performance gains, the [VA ICD-9 Codes OR

text analysis of clinical note] case-detection approach worsened

outbreak detection performance (Fig. 2, upper panel, compare

blue ‘‘x’’ signs (CDA 5) to black circles (CDA 2)). In contrast,

combining text analyses of clinical notes with ICD-9 codes using

an ‘‘AND’’ logical operand, which improved specificity and PPV

at the expense of sensitivity and lowered the area under the ROC

curve (Table 1, compare CDA 7 to CDA 2), improved outbreak

detection performance (Fig. 2, upper panel, compare purple

triangles (CDA 7) to black circles (CDA 2)).

Effect of adding selected structured EMR data other than
diagnostic codes

We had previously found that selected structured EMR data,

such as the documentation of fever or a prescription for cough

suppressants, could further improve the test characteristics of ARI

CDAs (Table 1, compare CDA 3 to CDA 2, CDA 6 to CDA 5,

and CDA 8 to CDA 7) [19]. These improvements in case detection

performance did not translate into improved outbreak detection

Figure 1. Simulated prospective surveillance cycle. Upper panel displays daily counts time series of authentic cases identified by CDA 2, either
alone (black diamonds) or combined with simulated cases provided by the epidemic model for a community influenza outbreak that began at day
zero (red circles). Lower panel shows the corresponding EARS W2c statistic for both time series (authentic cases alone (black diamonds) or combined
with simulated epidemic cases (red circles)). True positive alarms occur when the value of the W2c statistic exceeds a threshold in the combined
dataset while remaining sub threshold in the background dataset. For this 80-day surveillance cycle, at the arbitrarily set threshold of 3.2 (blue
horizontal line), the time to the first true-positive alarm (detection delay) is 19 days. A false positive alarm occurs at day 50, when the statistic
originating from the background-only dataset exceeds threshold.
doi:10.1371/journal.pone.0100845.g001
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(Fig. 2, upper panel, compare the following AMOC curve pairs: a)

red triangles (CDA 3) to black circles (CDA 2); b) teal diamonds

(CDA 6) to blue ‘‘x’’ signs (CDA 5); and c) yellow boxes (CDA 8) to

purple triangles (CDA 7)).

Effect of case-detection strategies on surveillance
caseload

Figure 2, lower panel, illustrates AMOC curves of surveillance

systems based on the ARI CDA shown in the Table 1, this time

replacing the FAR by the corresponding number of yearly cases

contained in these false-alarms. We have named this variable

‘‘caseload’’ because it reflects the amount of work (phone calls,

records reviews) a public health practitioner would have to perform

to investigate the system’s false alarms in a given year. Replacing the

FAR by its corresponding caseload upheld the utility of adjusting the

diagnostic code sets (Fig. 2, lower panel, compare grey stars (CDA 2)

to black circles (CDA 1)) and did not support the addition of

structured EMR information about cough suppressants or fever

(Fig. 2, lower panel, compare red triangles (CDA 3) to black circles

(CDA 2); teal diamonds (CDA 6) to blue ‘‘x’’ signs (CDA 5); and

yellow boxes (CDA 8) to purple triangles (CDA 7)). Caseload

information further emphasized the advantages of coupling ICD-9

diagnostic codes with text analyses using an ‘‘AND’’ logical operand

to identify ARI cases. To wit, under our experimental conditions, a

public health department willing to investigate false alerts that

involved 200 cases/year would discover the influenza outbreak in

20 days with CDA 8 (Fig. 2, lower panel, yellow boxes) compared to

33 days with CDA 2 (Fig. 2, lower panel, black circles).

Discussion

We reconstituted a surveillance system in software to evaluate

the impact of alternative EMR-enabled case-detection approaches

on outbreak detection. Our data suggest that text analyses seeking

ARI symptoms documented in ambulatory care visit notes can be

combined with provider-assigned diagnostic codes to discover a

modeled influenza epidemic sooner and to reduce the number of

cases contained in false-alerts. These data support our working

hypothesis that information harnessed from a comprehensive

EMR can improve timeliness and efficiency of public health

surveillance.

If simulated data have often been used to compare statistical

approaches to cluster detection [28,31–35], we could not find

prior reports of the use of whole-system simulations to determine

how case-detection methods affect outbreak-detection perfor-

mance. The CDAs evaluated in this study were developed against

a validated manual reference standard and only included EMR

data elements found to contribute to ARI detection [19]. The

CDAs were implemented against authentic EMR entries and thus

produced backgrounds expected to mimic the noisy surveillance

conditions found in the real world. In keeping with our goal to

create a realistic evaluation platform, we also used an epidemic

model to simulate the cases expected to present to our particular

health system during an outbreak of severe influenza. Model-

generated cases were sporadic at first but soon attained numbers

large enough to be discovered by just about any surveillance

method. Such an epidemic signal narrowed the time window over

which alternative surveillance methods could demonstrate their

superiority over one another.

Most automated surveillance systems utilize diagnostic codes to

find diseased individuals. We [19] and others [36] have

demonstrated that even minor adjustments of code sets to account

for local practices can significantly strengthen case-detection

performance. We now report that those same adjustments

accelerated outbreak detection. Our data bolster the argument

for providers to assign ICD-9 codes to summarize outpatient

encounters, as it is done in VA medical centers, so that this coded

information can quickly be made available for surveillance

purposes. Our results further argue that diagnostic codes sets used

for case-detection should routinely optimized during surveillance

system development or expansion. In contrast, prescriptions for

cough suppressants, the only structured EMR data found to

contribute to ARI case detection aside from ICD-9 codes [19], did

not benefit outbreak detection. While these data suggest how to

streamline CDAs for this particular use-case, structured EMR data

other than diagnostic codes may very well prove useful in

discovering diseases that typically cause abnormal vital signs or

prompt predictable diagnostic or therapeutic interventions.

Information potentially useful to public health surveillance has

long been extracted from the free text narrative of chief complaints

[37–41], laboratory or imaging reports [37,38,41–44], hospital

discharge summaries [45,46] or outpatient clinical notes

[19,47,48]. To date however, little is known about how

information extracted from free text EMR fields should be

combined with structured data to accelerate outbreak detection.

We had previously found that text analyses aimed at abstracting

ARI symptoms typed in clinical notes [49] could improve the

performance of ARI CDAs [19]. Our simulations suggest that

when these text analyses were combined with structured data so as

to improve case-detection accuracy, timelier outbreak discovery

ensued. In contrast, when text analyses were directed toward

maximizing the area under the ROC for single-case detection,

outbreak detection performance deteriorated despite near-perfect

case-detection sensitivity. These results seem counter-intuitive until

we consider that outbreak detection depends upon a statistical

rendering of the size of the epidemic signal relative to that of a

baseline. With sensitivities in the 69–75% range, the high-

specificity CDAs did not recognize the largest possible number

of epidemic cases. Yet, with PPVs in the 50% range, they

disproportionately reduced the number of false-positive back-

ground cases and improved the system’s signal-to-noise ratio. Our

results therefore suggest that CDA performance measures that

attribute equal weight to sensitivity and specificity, such as the area

under the ROC curve, may not anticipate how well a CDA will

discover epidemics. Because of the complex interplay between

epidemic signals, background noises and statistical processes,

promising CDAs should be evaluated in a whole-system context

before they are incorporated into an operational surveillance

system.

Limitations

Even though we expect the empiric approach to system

improvement outlined this report to be broadly applicable, specific

results are necessarily confined to our experimental conditions.

Text analyses would indeed be expected to complement structured

data differently for diseases that are not defined through symptoms

only. Optimal EMR data integration may also depend on the

Figure 2. System performance using alternative case-detection methods. AMOC curves displaying epidemic Detection Delay (days) as a
function of daily false alert rate (FAR) (upper panel) or yearly caseload (lower panel). Each curve represent an alternative CDA: CDA 1 (grey stars), CDA 2
(black circles), CDA 3 (red triangles), CDA 4 (green crosses), CDA 5 (blue x’s), CDA 6 (teal diamonds), CDA 7 (purple triangles), CDA 8 (yellow stars).
doi:10.1371/journal.pone.0100845.g002
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characteristics of the epidemic, as well as on the nature and

utilization of the EMR in other health care cultures. Our

assumption that epidemic cases would be discovered at the same

rate as authentic cases may also not hold in reality, as real

epidemic cases may have a peculiar disease presentation or

severity, and vigilant providers may change their coding or

documentation behavior. Our results may also not represent the

final word on ARI outbreak detection in our own health system, as

we did not formally optimize individual system components, such

as ICD-9 groupings, text analyses or statistical approaches, and

have not validated our simulation findings in other medical

centers.

Summary

This work highlights an empiric approach to guide the

integration of complementary EMR data for the purpose of

epidemic surveillance. Through modular software development, a

realistic evaluation platform can be harnessed to estimate the cost

and benefit of alternative system configurations, or to match

detection sensitivity with available resources to investigate alerts.

The platform can also be extended to help improve detection of

any disease or event cluster, and may thus allow automated

surveillance systems to more vigorously participate in the

promotion of safe and effective healthcare practices.

Supporting Information

Datafile S1 (CDA 1) Time series of background case-
counts. 8-year background time series are provided for each of

the CDA outlined in the Table 1 (Datafile S1 (CDA 1), Datafile S2

(CDA 2), Datafile S3 (CDA 3), Datafile S4 (CDA 4), Datafile S5

(CDA 5), Datafile S6 (CDA 6), Datafile S7 (CDA 7), and Datafile

S8 (CDA 8)). Each text file contains three columns: a) a line

identification number (from 1 to 2921); b) the date ((m)m/dd/

yyyy); and c) the corresponding case count returned by the CDA

identified in the file title.

(TXT)

Datafile S2 (CDA 2) Time series of background case-
counts.

(TXT)

Datafile S3 (CDA 3) Time series of background case-
counts.

(TXT)

Datafile S4 (CDA 4) Time series of background case-
counts.

(TXT)

Datafile S5 (CDA 5) Time series of background case-
counts.

(TXT)

Datafile S6 (CDA 6) Time series of background case-
counts.

(TXT)

Datafile S7 (CDA 7) Time series of background case-
counts.

(TXT)

Datafile S8 (CDA 8) Time series of background case-
counts.
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